Finding treatments for Parkinson’s disease helps more than just those afflicted with the illness. The mere act of studying the disorder and looking for a cure has increased mans understanding of the physiological structure of the brain and it’s relation to movement of the body.
This article by Kim et al, was published in Nature, vol 418. These researchers are interested in deriving dopamine neurons from embryonic stem cells (ES cells); Parkinson’s disease is caused by the loss of neurons that produce dopamine.

Showing ES cells with Nurr1 has positive results for multiple markers of dopamine production
To quantitatively measure how much dopamine these ES cells could produce the researchers stained for tyrosine hydroxylase (TH), which catalyzes the conversion of L-tyrosine to dihydroxyphenylalanine (DOPA), the precursor for dopamine. Nuclear receptor related-1 (Nurr1) is a transcription factor that has a role in the differentiation of midbrain precursors into dopamine neurons.
In the study ES cell lines expressing Nurr1 are compared to native dopaminergic neurons and WT ES cells. Nurr1 ES cells outperform both comparative cell lines in TH stains, showing greater dopamine production.
Once the authors have demonstrated that their ES cell line with Nurr1 can produce dopamine just as well native dopamine producing neurons, they move on to graft the newly created cell lines to show that they don’t lose their capabilities within an animal model. At the very base, this study demonstrates the ability of embryonic stem cells to be turned into neurons capable of producing specific compounds, just as well native neurons.